: What are physical database design tradeoffs for decision support
data?

by Dan Power

Editor, DSSResources.com

Implementing a decision support database involves tradeoffs. A

designer needs to transform an ideal, logical data model into a model that

exploits effectively the capabilities and constraints of the actual hardware

computing environment and a specific database management system. The overall goal is
designing the database component of a data-driven DSS to minimize query

times. Efficient use of storage space is much less a concern. Tradeoffs

involve reasonably safe design changes, more aggressive compromises and

technical optimization changes (cf., Haughey, 2006). There is no single best

physical design. DSS analysts must ask probing questions and understand the design tradeoffs.

Harkins and Fuller (2002) in discussing moving from a logical to physical data model note we "must
reexamine the design in the light of the

capabilities offered by the target database." Choosing a database technology

constrains physical design decisions and most DBMS have

defaults for normal, anticipated query demands. A complete physical data model includes

all the database artifacts required to create relationships between tables and

achieve performance goals, such as indexes, constraint definitions, linking tables,

partitioned tables or clusters (cf. Wikipedia).

The Applied Information Science website notes "A physical data model is a single
logical model instantiated in a specific database management product

(e.g., Sybase, Oracle, Informix, etc.) in a specific installation. The physical data
model specifies implementation details which may be

features of a particular product or version, as well as configuration choices for

that database instance. These include index construction, alternate key declarations,
modes of referential integrity (declarative or procedural), constraints, views, and
physical storage objects such as tablespaces."

Ambler argues "Normalized data schemas, when put into production, often

suffer from performance problems." That is the reality for decision support

logical data models. A DSS analyst needs to understand the logical, ideal model
and make it work in a production environment. To effectively evaluate the tradeoffs,
a DSS analyst must ask questions like the following:

Page 1/6
(c) 2022 Daniel J. Power, Power Enterprises <power@dssresources.com>

URL: http://dssresources.com/fag/index.php?action=artikel&cat=&id=176&artlang=en




: What are physical database design tradeoffs for decision support
data?

1) What are user expectations for response time?

2) What are the security requirements for the data and the system?

3) What are the hardware platform limitations?

4) Will an existing database management system be used, if so what
are its limitations?

5) What is the anticipated data volume? How much data will be stored in
approximately how many tables?

6) How often will the decision support data store be accessed?

7) Will queries primarily be preplanned or ad hoc?

8) How many concurrent users are anticipated?

9) Will some data be accessed more often than other data?

10) In the logical design, are there many small lookup tables or other tables
that may be extensively involved in joins?

11) Will add, delete and update queries be possible for users?

Page 2/6
(c) 2022 Daniel J. Power, Power Enterprises <power@dssresources.com>

URL: http://dssresources.com/fag/index.php?action=artikel&cat=&id=176&artlang=en




: What are physical database design tradeoffs for decision support
data?

12) Do natural partitions exist for the data like stores, regions
or fiscal quarters that might impact design decisions?

Tradeoffs primarily involve choices about normalization and table construction, partitioning, indexing,
and storage redundancy.

So what are reasonably safe design changes and compromises for DSS data storage? If the
logical model is normalized and users can NOT add, delete and update

data, then splitting a table, combining two tables, adding a calculated

field or creating a primary key index is usually "safe" and an easy tradeoff to improve

query performance.

More aggressive compromises to the logical model need to be evaluated

more carefully to avoid unanticipated consequences. For example, adding

redundant data is a more aggressive strategy that can backfire. If the data

comes from different source systems and is not "really" redundant, results from queries will vary.
Aggressive trade-offs can reduce data quality and compromise the integrity of the

DSS. Also, some denormalization can reduce the understandability of the physical

data model and lead to query design errors. Data integrity is very important and

should not be compromized in trade-offs.

Deciding to implement technical optimizations like a hash or join index seems easy, but

may be more difficult in some DBMS products that others. Also, many indexing approaches exist
and have advantages and disadvantages. The wrong type of indexing can create problem. So
unless the data quantity

is very large, technical optimization may NOT be needed to provide acceptable query performance.
Scalability is a serious problem with enterprise-wide, data-driven DSS, but the DBMS and the
architecture impact scalability more than indexes and DBMS "tuning”. Remember database "tuning"
may lead to

poorer performance rather than improving query response.

Selecting appropriate indexes and database architectures

is very important for a decision support data store. Choices should be made
following planned data gathering and thoughtful analysis and evaluation.
Creating a scenario of how the system will be used can assist in estimating loads
and data storage needs.

Page 3/6
(c) 2022 Daniel J. Power, Power Enterprises <power@dssresources.com>

URL: http://dssresources.com/fag/index.php?action=artikel&cat=&id=176&artlang=en




: What are physical database design tradeoffs for decision support
data?

In general, if DSS data is physically stored in tables where some relations have been denormalized,
it can be more efficient for some anticipated queries (cf., Power, 2002). If the data store is an
historical archive,

the denormalization is not likely to lead to anomolies, but it may be harder to

write appropriate queries or create drop downs for queries or support ad hoc queries. Also, creating
a dynamic or materialized view may be a better long term alternative than denormalizing the base
tables and may gain the same query performance improvements. Denormalization and views
involve maintenance and performance tradeoffs.

In many cases, it is appropriate to horizonally partition decision support data. Partitioning
involves placing data rows in different files based on categories like date created,

store where transaction occurred or region. Hoffer et al (2008) note "partitioned files can
be placed on seperate disk drive to reduce contention for the same

drive and hence improve query performance ..." Also, in some cases vertical partitioning or
a combination of the two may improve performance given the anticipated query load.

Indexing is a very important structuring tool for decision support data. An index is a

table or other data structure used to determine the location of rows in a file that

satisfy some condition. In general,

a decision support database is changed in clumps with batch updates every

day or week. Complex queries are then run against the historical database which may be very
large.

For decision support data, in some situations a hierarchical index speeds queries. In other situations
an "extended join index" can improve query performance. If the join

is used frequently in queries, then the index is used repeatedly. According to Burleson, "Oracle
benchmarks claim that bitmap join indexes can run a query more than

eight times faster than traditional indexing methods." Hoffer et al (2009) note

a hash index table is found "in some data warehousing database technologies that use

parallel processing (p. 281)".

Indexes are most useful when associated with very large tables

that have many values for attributes. Also, indexing fields that appear in the WHERE

clause of queries can be very useful. Some indexes are automatically created. For example, Oracle
creates an index for each

UNIQUE or PRIMARY KEY declaration. Designers should be careful when indexing attributes

that have NULL values. Indexes are primarily used to enhance database performance,

but inappropriate use will result in slower performance.
Page 4/6

(c) 2022 Daniel J. Power, Power Enterprises <power@dssresources.com>

URL: http://dssresources.com/fag/index.php?action=artikel&cat=&id=176&artlang=en




: What are physical database design tradeoffs for decision support
data?

In terms of hardware and data storage, RAID-5 or Rotating Parity Array storage is generally

best for read-intensive applications accessing very large data sets spread over multiple

disk drives. In general, larger block sizes are used for decision support databases (cf., Hoffer et al,
2009).

In conclusion, we all need to improve our data modeling skills and especially

skill in translating normalized logical data models into effective physical models

for a particular hardware platform and database product. How do we improve our

data modeling skills? According to Ambler, "practice, practice, practice.”" | would

add GET A MENTOR. Failure in data modeling is not acceptable on large scale, data-driven DSS
projects.

References

Ambler, S. W., "Data Modeling 101," AgileData.org, URL
http://www.agiledata.org/essays/dataModeling101.html .

Applied Information Science website, URL http://www.aisintl.com/case/CDM-PDM.html

Ben-Gan, |., "Ensure Data Integrity with Cascading DRI," SQL Server Magazine,
June 1, 2002, InstantDoc #25120, URL
http://www.sglmag.com/Article/ArticlelD/25120/sqgl_server_25120.html .

Burleson, D., "How to use Oracle9i bitmap join indexes," November 12, 2002,
Burleson Consulting, URL http://www.dba-oracle.com/art_builder_bitmap_join_idx.htm

Cohen, R., "Seven Principles for Enterprise Data Warehouse Design," DM Review Online, January
12, 2006, URL http://www.dmreview.com/news/1045818-1.html .

Date, C.J., Database in Depth: Relational ThePory fg/rGPractitioners, O'Reilly, 2005.
age

(c) 2022 Daniel J. Power, Power Enterprises <power@dssresources.com>

URL: http://dssresources.com/fag/index.php?action=artikel&cat=&id=176&artlang=en




: What are physical database design tradeoffs for decision support
data?

Harkins, S. and A. Fuller, "The transition from logical to physical data model,"
TechRepublic.com, August 21, 2002, URL
http://articles.techrepublic.com.com/5100-10878_11-1050841.html

Haughey, T., "Transforming a Logical Data Model to a Physical Database Design - an Overview,"
TDAN.com, February 1, 2006, URL http://www.tdan.com/view-special-features/5389 .

Hoffer, J. A., M.B. Prescott and H. Topi, Modern Database Management (9th edition), Upper
Saddle River, NJ: Pearson/Prentice Hall, 2009.

Power, D., Is a Data Warehouse a DSS? What is a star schema? How does a snowflake schema
differ from a star schema? DSS News, Vol. 3, No. 4, February 17, 2002.

Power, D., "Is parallel database technology needed for data-driven DSS?" DSS News, Vol. 7, No. 8,
April 9, 2006.

w3schools, "SQL Tutorial," URL http://www.w3schools.com/sq|l .

Wikipedia, "Index (database),” URL http://en.wikipedia.org/wiki/Index_(database)

Wikipedia, "Physical data model," URL http://en.wikipedia.org/wiki/Physical _data_model

Author: Daniel Power
Last update: 2008-10-01 10:36

Page 6/6
(c) 2022 Daniel J. Power, Power Enterprises <power@dssresources.com>

URL: http://dssresources.com/fag/index.php?action=artikel&cat=&id=176&artlang=en




