from DSSResources.com

New research initiative explores ways to apply learning analytics and educational data mining to enhance retention at Colorado State University

Collaboration between McGraw-Hill Education and Colorado State University is first academic research project launched under the McGraw-Hill Education Learning Science Research Council

AUSTIN, Texas, March 6, 2017 /PRNewswire/ -- Today at SXSWedu, learning science company McGraw-Hill Education announced a new collaboration between its recently formed McGraw-Hill Education Learning Science Research Council and Colorado State University (CSU).

This new research initiative explores the use of advanced techniques in learning analytics and educational data mining to reduce the Drop-Fail-Withdraw (DFW) rates in science, technology, engineering and mathematics (STEM) gateway courses. Unsuccessful course completion in these gateway courses is often associated with significantly lower retention and graduation rates. Capitalizing on its research expertise, Colorado State University chose to work with McGraw-Hill Education to find new ways to use learning analytics to strengthen learning outcomes for its students taking these courses.

"Learning analytics is developing quickly as an area of academic research, and we want to use this type of research to solve strategic challenges at the university," said Patrick Burns, CIO, Colorado State University. "By working with McGraw-Hill Education's researchers, we hope to discover new techniques for solving the persistent challenge of high attrition rates in STEM gateway courses. We expect that the research will also benefit other courses and allow faculty to access data and insights in novel ways for enhancing teaching effectiveness."

Dave Johnson, Director of Research and Analytics for Colorado State University Online, which has been leading CSU's learning analytics research commented, "Through our collaboration with McGraw-Hill Education, we are looking at how we can provide instructors with actionable, data-driven insights that will allow them to help students, at all levels, successfully complete their courses. We are already starting to see some exciting results and look forward to incorporating our findings in new practical applications."

The research study, which is currently underway at Colorado State University, is focusing initially on testing and validating predictive models for course completion. The predictive model will be combined with a set of interactive insights for advanced diagnostics and intervention. These patterns can serve as early indicators as to which students will most likely complete a course and which ones are in danger of failing and ultimately help instructors identify at-risk students that they can work with more closely to ensure course completion. Preliminary results from the research project are expected in the first half of this year.

"The mission of our Learning Science Research Council is to promote further research and exploration into the science of how students learn to help inform the continued growth and refinement of technology-supported learning in the years to come," said David Levin, president and CEO of McGraw-Hill Education. "We are seeking a wide range of collaborations with institutions like Colorado State University to deepen our collective understanding of how to effectively use technology to improve learning outcomes. We want to make our researchers and extensive resources available to test new theories and content in real-world educational settings to solve real-world education challenges."

McGraw-Hill Education's Learning Science Research Council is focused on four key areas of research:

** Learning Analytics: applying data science to generate predictive models and actionable insights for learners and instructors

** Learning Algorithms: creating personalized algorithms based on learning science to help students learn better

** Learning Quality: applying statistics rigor to evaluate and improve the quality of learning content and assessments

** Learning Efficacy: incorporating causal inferencing and modeling methodologies for establishing learning efficacy

The Council draws upon the collective expertise of McGraw-Hill Education's own senior researchers, who guide the company's learning science research initiatives, as well as a leading group of researchers, scientists and academics committed to examining the use of technology in improving learning outcomes. The Council's external advisory board members include:

Dr. Ryan Baker, Associate Professor, Graduate School of Education, University of Pennsylvania

Robert S. Feldman, Deputy Chancellor and Professor of Psychological and Brain Sciences, University of Massachusetts Amherst

Dr. Xiangen Hu, Professor, Department of Psychology, University of Memphis, and Dean of Psychology, Central China Normal University

Richard Larson, MITSUI Professor of Engineering Systems, MIT Institute for Data, Systems and Society, Massachusetts Institute of Technology (MIT)

Rosemary Luckin, Professor of Learner Centred Design, UCL Knowledge Lab

For more information about the McGraw-Hill Education Learning Science Research Council, visit http://www.mheducation.com/learning-science/ or stop by the McGraw-Hill Education lounge at SXSWedu in Room 406 at the Hilton Austin.

About McGraw-Hill Education

McGraw-Hill Education is a learning science company that delivers personalized learning experiences that help students, parents, educators and professionals drive results. McGraw-Hill Education has offices across North America, India, China, Europe, the Middle East and South America and makes its learning solutions available in nearly 60 languages. Visit us at mheducation.com or find us on Facebook or Twitter.

SOURCE McGraw-Hill Education

Related Link http://www.mheducation.com



DSS Home |  About Us |  Contact Us |  Site Index |  Subscribe | What's New
Please Tell 
Your Friends about DSSResources.COM Copyright © 1995-2015 by D. J. Power (see his home page). DSSResources.COMsm is maintained by Daniel J. Power. Please contact him at djpower1950 at gmail.com with questions. See disclaimer and privacy statement.